Sunday, April 2, 2017

Numerical Methods Problems

Some numerical methods problems from B S Grewal...

Regula - falsi
1) Find a real root of the equation x3-2x-5=0 by the method of false position correct to three decimal places.
2) Find the root of the equation cos x=xex using regular-falsi method correct to four decimal places.
3) Find the real root of the equation x log 10 x = 1.2 by regula-falsi method correct upto four decimal places.
4) Use the method of false position, to find the fourth root of 32 correct upto three decimal places.
5) Using regula-falsi method, find the real root of the following equations correct to three decimal places:
i) xex=2                 ii) cos x=3x-1      iii) xex=sinx    iv) x tanx=-1            v) 2x-logx=7       vi) 3x+sinx=ex
6) Find the fourth root of 12 correct to three decimal places by interpolation method(regula falsi)
7) Locate the root of f(x) = x10 -1=0 between 0 and 1.3 using method of false position.
Newton – Raphson
1) Find the positive root of x4-x=10 correct to three decimal places using newton-raphson method.
2) Find by newton’s method, the real root of the equation 3x=cosx+1 correct to four decimal places.
3) Using Newton’s iterative method, find the real root of x log 10 x = 1.2 correct to five decimal places.
4) Find by newton-raphson method, a root of the following equations correct upto 3 decimal places.
i) x3-3x+1=0     ii) x3-2x-5=0      iii) x3-5x+3=0       iv) 3x3-9x2+8=0
5) Using newton’s iterative method, find a root of the following equations correct to 4 decimal places:
i) x4+x3-7x2-x+5=0 which lies between 2 and 3.
ii) x5 – 5 x2 +3=0
6) Find the negative root of equation x3 -21x +3500=0 correct to 2 decimal places by newton’s method.
7) Using Newton-Raphson method, find a root of the following equations correct to 3 decimal places:
i) x2+4sinx=0
ii) x sinx+cosx=0
iii) ex=x3+cos25x which is near 4.5

iv) x log 10 x=12.34 start with x0=4.5
v) cosx = x ex
vi) 10x+x-4=0
8) use newton’s method to find the smallest root of the equation ex sinx=1 to four decimal places.
9) Develop an algorithm using N.R method, to find the fourth root of a positive number N and hence find .(fourth root of 32).

10) evaluate the following(correct to 3 decimal places) by using newton-raphson method.
i) 1/18                   ii) 1/ (square root of 15)             iii) (28)-1/4

11) State and explain the newton-raphson method to find the roots of a differentiable equation.


Gauss Elimination Method:
1) Apply the gauss elimination method to solve the equations x+4y-z=-5; x+y-6z=-12; 3x-y-z=4
2)Solve 10x-7y+3z+5u=6; -6x+8y-z-4u=5; 3x+y+4y+11u=2; 5x-9y-2z+4u=7 by gauss elimination.
3) Using gauss elimination method, solve the equations x+2y+3z-u=10, 2x+3y-3z-u=1, 2x-y+2z+3u=7, 3x+2y-4z+3u=2.
4) Solve the following equations by gauss elimination method:
i) x + y + z=9; 2x - 3y + 4z = 13; 3x + 4y + 5z = 40
ii) 2x + 2y + z = 12; 3x + 2y + 2z = 8; 5x + 10y -8z =10
iii) 2x – y + 3z = 9; x + y + z = 6; x – y + z=2
iv) 2x1 + 4x2 + x3 = 3; 3x1 + 2x2 – 2x3= -2; x1 – x2 + x3 = 6
v) 5x1 + x2 + x3 + x4 = 4; x1 + 7x2 + x3 + x4 = 12; x1 + x2 + 6x3 + x4 = -5; x1 + x2 + x3 + 4x4= -6

Gauss-jordan method:
1) Apply Gauss-jordan method to solve the equations
 x + y + z=9; 2x - 3y + 4z = 13; 3x + 4y + 5z = 40
2) Solve the equations 10x-7y+3z+5u=6;
                                                -6x+8y-z-4u=5;
                                                3x+y+4z+11u=2;
                                                5x-9y-2z+4u=7

3) solve the following equations by Gauss-Jordan Method:
i) 2x+5y+7z=52; 2x+y-z=0; x+y+z=9
ii) 2x – 3y +z=-1; x +4y +5z=25; 3x-4y+z=2
iii) x + y+ z=9; 2x+y-z=0; 2x+5y+7z=52
iv) x + 3y + 3z=16; x + 4y + 3z=18; x + 3y + 4z=19
v) 2x1+x2+5x3+x4=5; x1+x2-3x3+4x4=-1
    3x1+6x2-2x3+x4=8; 2x1+2x2+2x3-3x4=2

LU decomposition:
1) Solve the following equations by factorization method:
i) 2x+3y+z=9; x+2y+3z=6; 3x+y+2z=8
ii) 10x+y+z=12; 2x+10y+z=13; 2x+2y+10z=14
iii) 10x+y+2z=13; 3x+10y+z=14; 2x+3y+10z=15
iv) 2x1-x2+x3=-1; 2x2-x3+x4=1; x1+2x3-x4=-1; x1+x2+2x4=3

Iterative methods:
Jacobi’s Iteration:
1) Solve by Jacobi’s iteration method, the equations
20x+y-2z=17;
3x+20y-z=-18;
2x-3y+20z=25
2) Solve by jacobi’s iteration method, the equations 10x + y – z=11.19
                                                                                                       x+10y+z=28.08;
                                                                                                      -x+y+10z=35.61
3) Solve the equations:
10x1-2x2-x3-x4=3;
-2x1+10x2-x3-x4=15;
-x1-x2+10x3-2x4=27;
-x1-x2-2x3+10x4=-9

4) Solve by jacobi’s method, the equations: 5x-y+z=10;
                                                                                     2x+4y=12;
                                                                                     x+y+5z=-1 starting with the solution{2,3,0}

5) Solve by jacobi’s method the equations:
13x + 5y-3z+u=18;
2x+12y+z-4u=13;
x-4y+10z+u=29;
2x+y-3z+9u=31;

Gauss-Seidel Method:
1) Apply Gauss-Seidel iteration method to solve the equations 20x+y-2z=17
3x+20y-z=-18; 2x-3y+20z=25

2) Solve the equations 27x+6y-z=85;
                                                x+y+54z=110;
                                                6x+15y+2z=72;

3) Apply Gauss-Seidel iteration method to solve the equations:
10x1-2x2-x3-x4=3;
-2x1+10x2-x3-x4=15;
-x1-x2+10x3+2x4=27;
-x1-x2-2x3+10x4=-9

4) Solve the following equations by Gauss-seidel method:
i) 2x+y+6z=9; 8x+3y+2z=13; x+5y+z=7
ii) 28x+4y-z=32; x+3y+10z=24; 2x+17y+4z=35;
iii) 10x+y+z=12; 2x+10y+z=13; 2x+2y+10z=14;
iv) 7x1+52x2+13x3=104; 83x1+11x2-4x3=95; 3x1+8x2+29x3=71

v) 3x1-0.1x2-0.2x3=7.85; 0.1x1+7x2-0.3x3=-19.3; 0.3x1-0.2x2+10x3=71.4

No comments:

Post a Comment