Pattern Matching using DFA in Java:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
package AdvancedAlgo;
import java.util.Scanner;
public class DFA {
public static final int NO_OF_CHARS = 256;
public static int getNextState(char[] pat, int M, int state, int x) {
/* If the character c is same as next character in pattern,then simply increment state*/
if (state < M && x == pat[state])
return state + 1;
int ns, i;
/* ns stores the result which is next state ns finally contains the longest prefix which is
* also suffix in "pat[0..state-1]c". Start from the largest possible value and stop when
* you find a prefix which is also suffix
**/
for (ns = state; ns > 0; ns--) {
if (pat[ns - 1] == x) {
for (i = 0; i < ns - 1; i++) {
if (pat[i] != pat[state - ns + 1 + i])
break;
}
if (i == ns - 1)
return ns;
}
}
return 0;
}
/*
* This function builds the TF table which represents Finite Automata for a
* given pattern
*/
public static void computeTF(char[] pat, int M, int[][] TF) {
int state, x;
for (state = 0; state <= M; ++state)
for (x = 0; x < NO_OF_CHARS; ++x)
TF[state][x] = getNextState(pat, M, state, x);
}
/*
* Prints all occurrences of pat in txt
*/
public static void search(char[] pat, char[] txt) {
int M = pat.length;
int N = txt.length;
int[][] TF = new int[M + 1][NO_OF_CHARS];
computeTF(pat, M, TF);
// Process txt over FA.
int i, state = 0;
for (i = 0; i < N; i++) {
state = TF[state][txt[i]];
if (state == M) {
System.out.print(" \npattern found at position: " + (i - M + 1));
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter the main string: ");
String textStr = sc.nextLine();
System.out.println("Enter the pattern string: ");
String pattern = sc.nextLine();
search(pattern.toCharArray(), textStr.toCharArray());
sc.close();
}
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Input/Output:
Enter the main string:
abcdefghijklmnopqrstuvwxy
Enter the pattern string:
xy
pattern found at position: 23
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
package AdvancedAlgo;
import java.util.Scanner;
public class DFA {
public static final int NO_OF_CHARS = 256;
public static int getNextState(char[] pat, int M, int state, int x) {
/* If the character c is same as next character in pattern,then simply increment state*/
if (state < M && x == pat[state])
return state + 1;
int ns, i;
/* ns stores the result which is next state ns finally contains the longest prefix which is
* also suffix in "pat[0..state-1]c". Start from the largest possible value and stop when
* you find a prefix which is also suffix
**/
for (ns = state; ns > 0; ns--) {
if (pat[ns - 1] == x) {
for (i = 0; i < ns - 1; i++) {
if (pat[i] != pat[state - ns + 1 + i])
break;
}
if (i == ns - 1)
return ns;
}
}
return 0;
}
/*
* This function builds the TF table which represents Finite Automata for a
* given pattern
*/
public static void computeTF(char[] pat, int M, int[][] TF) {
int state, x;
for (state = 0; state <= M; ++state)
for (x = 0; x < NO_OF_CHARS; ++x)
TF[state][x] = getNextState(pat, M, state, x);
}
/*
* Prints all occurrences of pat in txt
*/
public static void search(char[] pat, char[] txt) {
int M = pat.length;
int N = txt.length;
int[][] TF = new int[M + 1][NO_OF_CHARS];
computeTF(pat, M, TF);
// Process txt over FA.
int i, state = 0;
for (i = 0; i < N; i++) {
state = TF[state][txt[i]];
if (state == M) {
System.out.print(" \npattern found at position: " + (i - M + 1));
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter the main string: ");
String textStr = sc.nextLine();
System.out.println("Enter the pattern string: ");
String pattern = sc.nextLine();
search(pattern.toCharArray(), textStr.toCharArray());
sc.close();
}
}
Input/Output:
Enter the main string:
abcdefghijklmnopqrstuvwxy
Enter the pattern string:
xy
pattern found at position: 23
No comments:
Post a Comment